Peak flows values (Q) and hydrograph volumes (V) are obtained from a selected family of historical flood events (period 1957–2017), for two neighboring mountain catchments located in the Ebro river basin, Spain: rivers Ésera and Isábena. Barasona dam is located downstream of the river junction. The peaks over threshold (POT) method is used for a univariate frequency analysis performed for both variables, Q and V, comparing several suitable distribution functions. Extreme value copulas families have been applied to model the bivariate distribution (Q, V) for each of the rivers. Several goodness-of-fit tests were used to assess the applicability of the selected copulas. A similar copula approach was carried out to model the dependence between peak flows of both rivers. Based on the above-mentioned statistical analysis, a Monte Carlo simulation of synthetic design flood hydrographs (DFH) downstream of the river junction is performed. A gamma-type theoretical pattern is assumed for partial hydrographs. The resulting synthetic hydrographs at the Barasona reservoir are finally obtained accounting for flow peak time lag, also described in statistical terms. A 50,000 hydrographs ensemble was generated, preserving statistical properties of marginal distributions as well as statistical dependence between variables. The proposed method provides an efficient and practical modeling framework for the hydrological risk assessment of the dam, improving the basis for the optimal management of such infrastructure.
Read full abstract