We propose a spectrally slicing-and-synthesizing coherent optical spectrum analyzer to measure complex field waveforms of quadrature amplitude modulation (QAM) optical signals with ultralong periods. The optical spectrum of a measured optical signal is divided into multiple narrowband spectral components, called slices. The slices are sequentially measured using low-speed coherent detection. After phase noise suppression and frequency fluctuation compensation on each slice, the measured slices are synthesized to recover the original signal spectrum. Our numerical and experimental results confirm that the proposed method can overcome the limitation of the measurement bandwidth because the signal spectrum can synthesize more than 100 slices. We experimentally demonstrate complex field measurements of 16QAM optical signals. Our method can measure high-speed optical complex field waveforms with no bandwidth limitation.
Read full abstract