Aiming to enhance the bandwidth in near-memory computing, this paper proposes a SSA-over-array (SSoA) architecture. By relocating the secondary sense amplifier (SSA) from dynamic random access memory (DRAM) to the logic die and repositioning the DRAM-to-logic stacking interface closer to the DRAM core, the SSoA overcomes the layout and area limitations of SSA and master DQ (MDQ), leading to improvements in DRAM data-width density and frequency, significantly enhancing bandwidth density. The quantitative evaluation results show a 70.18 times improvement in bandwidth per unit area over the baseline, with a maximum bandwidth of 168.296 Tbps/Gb. We believe the SSoA is poised to redefine near-memory computing development strategies.