We show by first-principles calculations that the Dirac nodal-line semimetal phase can co-exist with the ferromagnetic order at room temperature in chromium dioxide, a widely used material in magnetic tape applications, under small tensile hydrostatic strains. An ideally flat Dirac nodal ring close to the Fermi energy is placed in the reflection-invariant boundary of the Brillouin zone perpendicular to the magnetic order, and is topologically protected by the unitary mirror symmetry of the magnetic group $D_{4h}(C_{4h})$, which quantizes the corresponding Berry phase into integer multiples of $\pi$. The symmetry-dependent topological stability is demonstrated through showing that only the topologically protected nodal ring can persistently exist under small anisotropic stains preservingthe symmetry $D_{4h}(C_{4h})$, while the other seeming band touching points are generically gapped. Our work provides a practical platform for the investigation of novel physics and potential applications of the Dirac nodal-line and drumhead fermions, in particular those related to ferromagnetic properties
Read full abstract