A bio-inspired two-scale image complementarity evaluation method is proposed. This novel multi-scale method provides a promising alternative for the performance assessment of image fusion algorithms. Moreover, it can also be used to compare and analyze the multi-scale difference of raw images. Two metrics are presented and used to assess the complementarity of fusion images in non-subsampled contourlet transform (NSCT) domains: visual saliency differences (VSDs) at the coarse scales and detail similarities (DSs) at the fine scales. Visual attention mechanism (VAM)-based saliency maps are combined with NSCT low-pass subbands to compute the VSDs, and linear correlation and contrast consistency-based DSs are compared in NSCT band-pass subbands. Five main multi-scale transform (MST)-based fusion algorithms were compared by using 30 groups of raw images that consist of four types of fusion images. Effects of NSCT filters and decomposition levels on evaluation results are discussed in detail. Furthermore, a group of color multi-exposure fusion images were also taken as examples to evaluate the complementarity of raw images. Experimental results demonstrate the effectiveness of the proposed method, especially for MST-based image fusion algorithms.
Read full abstract