AbstractWe report a novel approach for dynamically tuning and reconfiguring microwave bandpass filters (BPFs) based on optically controlled switching elements using photoconductivity modulation in semiconductors. For a prototype demonstration, a BPF circuit featuring a second‐order design using two closely coupled split‐ring resonators embedded with multiple silicon chips (as switching elements) was designed, fabricated, and characterized. The silicon chips were optically linked to fiber‐coupled laser diodes (808 nm light) for switching/modulation, enabling dynamic tuning and reconfiguring of the BPF without any complex biasing circuits. By turning on and off the two laser diodes simultaneously, the BPF response can be dynamically reconfigured between bandpass and broadband suppression. Moreover, the attenuation level of the passband can be continuously adjusted (from 0.7 to 22 dB at the center frequency of 3.03 GHz) by varying the light intensity from 0 to 40 W/cm2. The tuning/reconfiguring 3‐dB bandwidth is estimated to be ~200 kHz. In addition, the potential and limitations of the proposed approach using photoconductivity modulation are discussed. With the strong tuning/reconfiguring capability demonstrated and the great potential for high‐frequency operation, this approach holds promise for the development of more advanced tunable filters and other adaptive circuits for next‐generation sensing, imaging, and communication systems.
Read full abstract