The purpose of this paper is to present a quick, complete, and exact method of design and analysis of double- and triple-tuned band-pass amplifiers. The necessary small-percentage pass-band equations are derived giving the relationship between the circuit characteristics and the response characteristics. These circuit characteristics are: the resonant frequency f <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</inf> , coefficient of coupling K, the circuit Q, and the input and output capacitances C <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">in</inf> , and C <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">out</inf> . The response characteristics are: the percentage bandwidth between peaks Δf <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</inf> /f <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</inf> , the peak-to-valley response ratio within the pass band V <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</inf> I/V <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">v</inf> , the peak-to-"skirt" response ratio V <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</inf> /V at different skirt-to-peak bandwidth ratio points Δf/Δf <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</inf> outside the pass band, the circuit gain at the peaks, and the phase shift θ at any frequency. These design equations, extended to the case of one to eight cascaded stages, are incorporated in two sets of conveniently used nomographs, one for double-tuned circuits and one for triple-tuned circuits. Specific examples of the use of these nomographs are given.