The shortwave and longwave radiation budget at land surfaces is largely dependent on two fundamental quantities, the albedo and the land surface temperature (LST). A time series (November 2005 to March 2006) of daily data from the Indian geostationary satellite Kalpana‐1 Very High Resolution Radiometer (K1VHRR) sensor in the visible (VIS), water vapour (WV) and thermal infrared (TIR) bands from noontime (0900 GMT) observations were processed to retrieve these quantities in clear skies for five winter months. Cloud detection was carried out using bispectral threshold tests (in both VIS and TIR bands) in a dekadal time series. Surface albedo was retrieved using a simple atmospheric transmission model. K1VHRR albedo was compared with Moderate Resolution Imaging Spectroradiometer (MODIS) AQUA noontime albedo over different land targets (agriculture, forest, desert, scrub and snow) that showed minimum differences over agriculture and forest. The comparison of spatial albedo over different landscapes yielded a root mean square deviation (RMSD) of 0.021 in VHRR albedo (9% of MODIS albedo). A mono‐window algorithm was implemented with a single TIR band to retrieve the LST. Its accuracy was also verified over different land targets by comparison with aggregated MODIS AQUA LST. The maximum RMSD was obtained over agriculture. Spatial comparison of VHRR and AQUA LSTs over homogeneous and heterogeneous landscape cutouts revealed an overall RMSD of 2.3 K. An improvement in the retrieval accuracy is expected to be achieved with atmospheric products from the sounder and split thermal bands in the imager of future INSAT 3D missions.