Small perturbations may dramatically influence the physical properties of a single non-Hermitian cavity. However, how these small perturbations interplay with bulk-edge properties is still to be demonstrated by experimentation. Here, we experimentally demonstrate edge states in coupled non-Hermitian resonators, based on a chain of all-dielectric coupled resonators where each resonator consists of two target particles. The evanescent coupling between the cavity and the target particles leads to tunable asymmetric backscattering, which plays a key role in the appearance of edge states in the bulk bandgap. We also demonstrate that these observed edge states are robust against weak disorders introduced to the system. Our study may inspire further explorations of the non-Hermitian bulk-edge properties.
Read full abstract