We have successfully demonstrated a bandgap alteration of transparent zinc oxide (ZnO) thin film with Mg dopant by using sol-gel spin coating technique. By increasing the dopant from 0 to 30 atomic percent (at.%), a decrement value in the cutoff is observed, where the absorption edge shifts continuously to the shorter wavelength side, towards 300 nm. This resulted in a significant bandgap increment from 3.28 to 3.57 eV. However, the transmittance of the thin film at 350-800 nm gradually downgraded, from 93 to 80 % which is most probably due to the grain size that becomes bigger, and it also affected the electrical properties. The decrement from 45 to 0.05 mA at +10 V was observed in the I-V characteristics, concluding the significant relationship; where higher optical bandgap materials will exhibit lower conductivity. These findings may be useful in optoelectronics devices.
Read full abstract