Metal-air batteries require the exploration of affordable electrocatalysts with exceptional catalytic performance for oxygen reduction reactions (ORR). One of the powerful ways to develop highly active and robust oxygen electrocatalysts is to load transition metal compounds onto a highly porous carbon aerogel. Here, we report a cell wall nanoengineering strategy to transform natural balsa wood into a wood-derived carbon aerogel (WCA), following by loading FeP nanoparticles inside the hierarchical N, P-doped WCA for ORR electrocatalysts. Wood nanotechnology is applied to manipulate the microstructure of the porous carbon aerogel with low-tortuosity, multichannel, and aligned pore, which benefits to the electron transportation for boosting the ORR. Under 0.1 M KOH conditions, the initial potential, half wave potential and limit current of FeP@N,P-WCA are 0.95 V, 0.84 V, and 5.20 mA cm−2 respectively, which are much higher than that of untreated wood and comparable to commercial Pt/C. The aqueous Zn-air batteries assembled with this catalyst exhibit a remarkable specific capacity of 775.5 mA h g−1 and better charge-discharge cycling stability. The excellent electrocatalytic activity demonstrated by FeP@N,P-WCA for ORR is attributed to the inherent tri-pathway (lumen, pit, and ray cell) porous structure of wood, the high conductivity and specific surface area of WCA (584.2 m2 g−1), and the highly dispersed FeP nanoparticles. This work provides a structural design concept for achieving high electrocatalytic biobased WCA reactors by combining wood nanotechnology and electrocatalysts chemistry for energy storage and conversion.
Read full abstract