AbstractThe greatest extent of Afromontane environments in the world is found in Ethiopia. These areas support exceptional biodiversity, but forest cover and ecological integrity have declined sharply in recent decades. Conservation and management efforts are hampered in part by an inadequate understanding of the basic ecology of major tree species. We investigated population structure and inferred population dynamics from size frequency distributions of 22 forest tree species encountered in montane forests of Ethiopia. We collected new empirical data from four sites in the Bale Mountains, where some of the country's most extensive and least disturbed forests remain, and conducted a systematic review and analysis of all such studies that reported population structure for one or more of these species in Ethiopia. Thirteen widespread montane tree species showed a reverse‐J size distribution, indicating a relatively stable population structure. Six other species had size‐frequency distributions that indicate episodic recruitment and/or removal of certain size classes. Specific causes of these patterns are uncertain: they may involve timber harvesting, herbivory, fire, or natural disturbances, but patterns were inconsistent and locality dependent. For three other tree species, existing data are inadequate for any interpretation of population structure and dynamics. A species of particular conservation concern that emerged from this analysis was Hagenia abyssinica, which was found in all areas to consist only of larger individuals with no recent recruitment. For management and conservation purposes, the species in most urgent need of new research are those with inadequate or inconsistent data, and H. abyssinica.