Abstract To accelerate the clinical adoption of quantitative magnetic resonance imaging (qMRI), frameworks are needed that not only allow for rapid acquisition, but also flexibility, cost efficiency, and high accuracy in parameter mapping. In this study, feed-forward deep neural network (DNN)- and iterative fitting-based frameworks are compared for multi-parametric (MP) relaxometry based on phase-cycled balanced steady-state free precession (pc-bSSFP) imaging. The performance of supervised DNNs (SVNN), self-supervised physics-informed DNNs (PINN), and an iterative fitting framework termed motion-insensitive rapid configuration relaxometry (MIRACLE) was evaluated in silico and in vivo in brain tissue of healthy subjects, including Monte Carlo sampling to simulate noise. DNNs were trained on three distinct in silico parameter distributions and at different signal-to-noise-ratios. The PINN framework, which incorporates physical knowledge into the training process, ensured more consistent inference and increased robustness to training data distribution compared to the SVNN. Furthermore, DNNs utilizing the full information of the underlying complex-valued MR data demonstrated ability to accelerate the data acquisition by a factor of 3. Whole-brain relaxometry using DNNs proved to be effective and adaptive, suggesting the potential for low-cost DNN retraining. This work emphasizes the advantages of in silico DNN MP-qMRI pipelines for rapid data generation and DNN training without extensive dictionary generation, long parameter inference times, or prolonged data acquisition, highlighting the flexible and rapid nature of lightweight machine learning applications for MP-qMRI.
Read full abstract