The present research introduces a novel concept termed “neutrosophic fuzzy metric space”, which extends the traditional metric space framework by incorporating the notion of neutrosophic fuzzy sets. A thorough investigation of various structural and topological properties within this newly proposed generalization of metric space has been conducted. Additionally, counterparts of well-known theorems such as the Uniform Convergence Theorem and the Baire Category Theorem have been established for this generalized metric space. Through rigorous analysis, a detailed understanding of its fundamental characteristics has been attained, illuminating its potential applications and theoretical significance.