A lectin magnetic separation (LMS) method for Staphylococcus aureus (S. aureus) was developed with the aim to improve the efficiency of magnetic nanoparticles and to expand the scope of bacterial recognition. Poly(ethylene glycol) (PEG)-mediated magnetic nanoparticles modified with streptavidin (MNP-PEG-SA) were synthesized and then applied to a two-step LMS based on the use of wheat germ agglutinin (WGA). Three specific methods for S. aureus detection (suitable for different requirements including detection time and sensitivity) were designed. The new LMS has improved anchoring efficiency (compared to two-step LMS methods) and requires a reduced number of magnetic particles. The Baird-Parker (B-P) method can detect S. aureus with a detection limit of 3 × 100CFU·mL-1 within 15h; the polymerase chain reaction (PCR) method can be finished within 4h, with the lowest detection limit (LOD) of 3 × 102CFU·mL-1. The LOD of HRP-pig IgG-based colorimetric method is 3 × 105CFU·mL-1, and the method only lasts for 2h. If combined with specific detection methods, it meets different needs for rapid detection of S. aureus. Graphical abstractSchematic representation of lectin magnetic separation (LMS) based on biotin-wheat germ agglutinin (WGA) and poly (ethylene glycol) (PEG)-mediated streptavidin-modified magnetic nanoparticles (MNP-PEG-SA) and three different quantification strategies (including B-P culture assay, PCR assay, and colorimetric assay) for S. aureus.
Read full abstract