In order to evaluate the effects of microstructure characteristics on fatigue crack growth (FCG) resistance of laser additive manufactured (LAM) AerMet100 steel, microstructures and FCG behaviors (in Paris region) of as-deposited specimen and three types of tempered martensite specimens were examined. Results indicate as-deposited specimens of LAM AerMet100 steel have apparent texture characteristics of epitaxy unidirectional growth prior-austenite columnar grains and grain-interior inter-dendritic blocky retained austenite with [001] crystallographic orientation. And poor boundary cracking resistance of these texture characteristics along deposition direction mainly contributes to the FCG rate anisotropy of as-deposited specimens. After post-LAM heat treatments, the FCG resistance of all heat-treated specimens apparently improves with the fracture mode of transgranular cracking. With the increase of yield strength, the value of Paris coefficient C of the steel increases, but the value of Paris exponent m decreases. Compared to the poor dislocation slip resistance of bainite plates in as-deposited specimens, the improved dislocation slip resistance of martensite plates is mainly related to the strong dislocation pinning effect of fine dispersive rod-like coherent M2C carbides, resulting in the stronger FCG resistance of the heat-treated specimens. In the Paris region of low ΔK (< ~ 20 MPa m1/2), fatigue cracks mainly propagate along the bainite (or martensite) plate interfaces, and the FCG rate of the steel can be effectively decreased by containing higher contents of thick film-like retained/reverted austenite; with the increase of ΔK, besides propagating along the soft inter-plate film-like austenite, fatigue cracks can also directly pass through the harder bainite (or martensite) plates with the striations and secondary cracks observed on fracture surfaces; in the Paris region of high ΔK (> ~ 70 MPa m1/2), higher contents of retained/reverted austenite inversely accelerate the FCG rate of heat-treated LAM AerMet100 steel. In contrast, grain refinement has the little influence on the FCG rate (in most of Paris region) of the heat-treated specimens.