The present study focuses on the preparation of niosomes containing an extract of Anabasis setifera and evaluates their efficacy in inhibiting the growth and proliferation of HeLa cells. Thin-layer hydration technique was used to prepare niosomes/extract nanoparticles (NPs). The physicochemical properties of the synthesized NPs were confirmed by scanning electron microscope (SEM), dynamic light scattering (DLS), zeta potential analysis, and FTIR. The cytotoxicity of the free extract, free niosome, and NPs was investigated by MTT (3-(4, 5-diMethylThiazol-2-yl)-2,5-diphenylTetrazolium bromide) assay. For this purpose, solutions of the three mentioned agents were prepared and diluted in 400, 200, 100, 50, 25, 12.5, and 6.25µg/mL concentrations and incubated for 24, 48, and 72h. After calculating the IC50 concentration and treating the cells with this concentration, real-time polymerase chain reaction (PCR) (to measure changes in the expression of apoptosis and metastasis genes), flow cytometry (to determine the amount of early and late induced apoptosis), and cell cycle test (to determine the stopping stage of the cancer cell division cycle) were performed. Moreover, the scratch test (the ability to inhibit cell metastasis after treatment) was used to evaluate cell migration. The MTT assay results showed that 72h of treatment with NPs has the greatest effect on the death of cancer cells. Real-time PCR showed that the expression of the Bad gene increased dramatically and the expression of the BCL-XL, integrin alpha 5 (ITGA5), and zinc finger E-box-binding homeobox 1 (ZEB-1) genes decreased significantly. The flow cytometry results showed that 48.64% of HeLa cells underwent apoptosis after treatment with synthesized NPs. The scratch test results showed that cancer cell metastasis stopped after treatment with NPs. The research demonstrates the significant potential of plant extract-loaded niosomes, as highly efficient drug carriers for cancer therapy.
Read full abstract