c-di-GMP is a ubiquitous bacterial second messenger that plays a central regulatory role in diverse biological processes. c-di-GMP was known to regulate chemotaxis in multiple bacterial species, but its effect on Escherichia coli chemotaxis remained unclear. As an effector of c-di-GMP in E. coli, YcgR when bound with c-di-GMP interacts with the flagellar motor to reduce its speed and its probability of rotating clockwise (CW bias). Here, we found that a significant fraction of the c-di-GMP::YcgR dynamically exchange between the motor and the cytosol. Through fluorescent measurements, we found that there was no competitive binding between the chemotaxis response regulator CheY-P and c-di-GMP::YcgR to the motor. To test the influence of elevated c-di-GMP levels on the chemotaxis pathway, we measured the chemotactic responses of E. coli cells using a FRET assay, finding that elevated c-di-GMP levels had no effect on the upstream part of chemotaxis pathway down to the level of CheY-P concentration. This suggested that the possible effect of elevated c-di-GMP levels on chemotactic motion was through regulation of motor speed and CW bias. Using stochastic simulations of chemotactic swimming, we showed that the effects of reducing motor speed and decreasing CW bias on chemotactic drift velocity are compensating for each other, resulting in minimal effect of elevated c-di-GMP levels on E. coli chemotaxis. Therefore, elevated c-di-GMP levels promote the transition from motile to sedentary forms of bacterial life by reducing the bacterial swimming speed and CW bias, while still maintaining a nearly intact chemotaxis capability in E. coli. IMPORTANCE The ubiquitous bacterial second messenger c-di-GMP was known to regulate chemotaxis in many bacterial species, but its effect on E. coli chemotaxis was unclear. Here we studied the effect of elevated c-di-GMP levels on chemotaxis in E. coli. We found that the binding of c-di-GMP::YcgR (its effector) and the chemotaxis response regulator CheY-P to the flagellar motor are noncompetitive, and elevated c-di-GMP levels do not affect the upstream part of the chemotaxis pathway down to the level of CheY-P concentration. Elevated c-di-GMP levels exert direct effects on the flagellar motor by reducing its speed and CW bias, but the resulting effects on chemotaxis performance are compensating for each other. Our findings here showed that elevated c-di-GMP levels maintain a nearly intact chemotaxis capability when promoting the transition from motile to sedentary forms of bacterial life in E. coli.