During implant maintenance, preserving a smooth surface on the machined transmucosal abutment is critical to reduce biofilm attachment and colonization. The present study compared the surface roughness and bacterial colonization of machined titanium surfaces after instrumentation with various materials. Forty-four machined grade 23 titanium discs were instrumented with a round polyether ether ketone (PEEK) tip, a plastic curette tip, or a pure titanium curette tip with piezoelectric devices. Before and after instrumentation, the surface roughness (Ra and Rz) values were analyzed with a profilometer and scanning electron microscopy (SEM). Streptococcus sanguinis was cultured and incubated for 24 hours on the instrumented discs, and colony-forming units per milliliter were obtained for each group. Samples instrumented with the metal ultrasonic tip significantly increased surface roughness compared with the other groups. This resulted in greater colonization by S. sanguinis than surfaces instrumented with PEEK tips or the negative control. Samples instrumented with PEEK and plastic tips did not exhibit any statistically significant increase in surface roughness, and SEM analysis revealed a significantly rougher surface of discs instrumented with metal compared with discs instrumented with plastic or PEEK tips despite the possibility of debris from tip dissolution. Our results suggest that instrumentation with metal ultrasonic tips with piezoelectric devices significantly increased machined titanium's surface roughness and elicited higher biofilm formation in vitro. Meanwhile, instrumentation of machined titanium with PEEK or plastic ultrasonic tips did not affect the surface roughness or bacterial adhesion.