Abstract

Bacterial colonization occurs on all biological and artificial surfaces in the oral cavity. The formation of multicellular biofilms or settlement of misallocated species can cause caries (diet‐depending acidification), periodontal diseases, peri‐implantitis, or denture‐associated stomatitis. Inhibition or delay of initial adhesion should strongly reduce dental interventions. However, no strategy is found to mildly manage bacterial colonization in this complex physiological environment, that is, without toxic, antibacterial, or antiseptic approaches. It is shown in a previous study that micro‐ and submicrometer surface topographies, which can effectively control initial bacterial adhesion in other application areas, do not have any significant impact within the oral cavity. Herein, a simple approach is presented to reduce initial microbial surface colonization by plain biphasic textures with defined combinations of hydrophobic and hydrophilic phases (SiO2, NH2, CH2, CH3, F3). A significant reduction of microbial adhesion on textures in the nano‐ and microscale (150 nm and 2.4 μm) compared to respective monophasic substrates is observed. This might be a new design principle for dental materials, to inhibit microbial colonization in critical scenarios, at least for shorter time scales (<24 h).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.