Plant-mediated interactions (i.e., induced resistance) between plant pathogens and insect herbivores were investigated using several pests of the cultivated tomato,Lycopersicon esculentum. Single leaflets of tomato leaves were injured by allowing a third-instarHelicoverpa zealarva to feed on the leaflets or by inoculating the leaflets withPseudomonas syringaepv.tomato(the causal agent of bacterial speck in tomato;Pst) or withPhytophthora infestans(the causal agent of late blight). Leaflets on separate plants were sprayed with benzothiadiazole, a chemical inducer of resistance toPst. The effects of these treatments on the resistance of uninoculated or undamaged leaflets to bothPstandH. zeawere then assessed after appropriate periods of time. The levels or activities of several defense-related proteins were determined in parallel. Infection of leaflets byPstdecreased the suitability of uninoculated leaflets of the same leaf for bothH. zeaand forPst. Similarly, feeding byH. zeacaused leaf-systemic increases in resistance to bothH. zeaandPst. Infection of leaflets byP. infestans, in contrast, had no effect on resistance of leaflets toH. zea. Treatment of leaves with benzothiadiazole induced resistance toPstbut improved suitability of leaflets forH. zea. Feeding byH. zeacaused the systemic accumulation of proteinase inhibitor mRNA and the systemic induction of polyphenol oxidase activity; in contrast, treatment with benzothiadiazole and inoculation withP. infestanscaused the systemic accumulation of pathogenesis-related protein mRNA and the systemic induction of peroxidase activity. Inoculation of leaflets withPstcaused the leaf-systemic accumulation of both pathogenesis-related protein and proteinase inhibitor mRNA and the systemic induction of both peroxidase and polyphenol oxidase activity. These results provide clear evidence for reciprocal induced resistance involving certain pathogens and arthropod herbivores of tomato. In addition, these results provide several insights into the integration and coordination of the induced defenses of tomato against multiple pests and suggest that the expression of resistance against some pests may compromise resistance to others.