Total ambient mercury concentrations and numbers of mercury resistant, aerobic heterotrophic bacteria at six locations in Chesapeake Bay were monitored over a 17 month period. Mercury resistance expressed as the proportion of the total, viable, aerobic, heterotrophic bacterial population reached a reproducible maximum in spring and was positively correlated with dissolved oxygen concentration and sediment mercury concentration and negatively correlated with water turbidity. A relationship between mercury resistance and metabolic capability for reduction of mercuric ion to the metallic state was established by surveying a number of HgCl2-resistant cultures. The reaction was also observed in microrganisms isolated by differential centrifugation of water and sediment samples. Mercuric ion exhibited an average half-life of 12.5 days in the presence of approximately 10(5) organisms/ml. Cultures resistant to 6 ppm of mercuric chloride and 3 ppm of phenylmercuric acetate (PMA) were classified into eight generic categories.Pseudomonas spp. were the most numerous of those bacteria capable of metabolizing both compounds; however, PMA was more toxic and was more selective forPseudomonas. The mercury-resistant generic distribution was distinct from that of the total bacterial generic distribution and differed significantly between water and sediment, positionally and seasonally. The proportion of nonglucose-utilizing mercury-resistantPsuedomonas spp. was found to be positively correlated with total bacterial mercury resistance. It is concluded from this study that numbers of mercury-resistant bacteria as established by plate count can serve as a valid index ofin situ Hg(2+) metabolism.
Read full abstract