The CRISPR-Cas system is a bacterial and archaea adaptive immune system and is a newly recognized mechanism for controlling antibiotic resistance gene transfer. Acinetobacter baumannii (A. baumannii) is an important organism responsible for a variety of nosocomial infections. A. baumannii infections have become problematic worldwide because of the resistance of A. baumannii to multiple antibiotics. Thus, it is clinically significant to explore the relationship between the CRISPR-Cas system and drug resistance in A. baumannii. This study aimed to analyze the genomic characteristics of the A. baumannii strain AB3 containing the type I-Fb CRISPR-Cas system, which was isolated from a tertiary care hospital in China, and to investigate the relationship between the CRISPR-Cas system and antibiotic resistance in this strain. The whole-genome sequencing (WGS) of the AB43 strain was performed using Illumina and PacBio sequencing. The complete genome of AB43 consisted of a 3,854,806 bp chromosome and a 104,309 bp plasmid. The specific characteristics of the CRISPR-Cas system in AB43 are described as follows: (1) The strain AB43 carries a complete type I-Fb CRISPR-Cas system; (2) Homology analysis confirmed that the cas genes in AB43 share high sequence similarity with the same subtype cas genes; (3) A total of 28 of 105 A. baumannii AB43 CRISPR spacers matched genes in the bacteriophage genome database and the plasmid database, implying that the CRISPR-Cas system in AB43 provides immunity against invasive bacteriophage and plasmids; (4) None of the CRISPR spacers in A. baumannii AB43 were matched with antimicrobial resistance genes in the NCBI database. In addition, we analyzed the presence of antibiotic resistance genes and insertion sequences in the AB43 strain and found that the number of antibiotic resistance genes was not lower than in the “no CRISPR-Cas system” strain. This study supports the idea that the CRISPR-Cas system may inhibit drug-resistance gene expression via endogenous gene regulation, except to the published mechanism that the CRISPR-Cas system efficiently limits the acquisition of antibiotic resistance genes that make bacteria sensitive to antibiotics.