Duodenoscopy-associated infections and outbreaks are reported globally despite strict adherence to duodenoscope reprocessing protocols. Therefore, new developments in the reprocessing procedure are needed. We evaluated a novel dynamic flow model for an additional cleaning step between precleaning and manual cleaning in the reprocessing procedure. A parallel plate flow chamber with a fluorinated ethylene propylene bottom plate was used to mimic the duodenoscope channels. The flow chamber was inoculated with a suspension containing Klebsiella pneumoniae to simulate bacterial contamination during a duodenoscopic procedure. After inoculation the flow chamber was flushed with a detergent mimicking precleaning. Subsequently the flow chamber was subjected to different interventions: flow with phosphate-buffered saline (PBS), flow with 2 commercial detergents, flow with sodium dodecyl sulfate with 3 different concentrations, and flow with microbubbles. Adhering bacteria were counted using phase-contrast microscopy throughout the experiment, and finally, bacterial viability was assessed. During precleaning both PBS and 1% (v/v) Neodisher Mediclean Forte were able to desorb bacteria, but neither proved superior. After precleaning only sodium dodecyl sulfate could desorb bacteria. Flushing during precleaning is an essential step for reducing adhering luminal bacteria, and sodium dodecyl sulfate is a promising detergent for bacterial desorption from duodenoscope channels after precleaning.
Read full abstract