While nutrient loading has affected all levels of Lake Winnipeg’s ecology, its greatest influence has likely been on the microbial community. In addition to eutrophication, zebra mussels (Dreissena polymorpha) have recently invaded the ecosystem and threaten food web dynamics. Their filter-feeding predation and association with bacteria, specifically phototrophs, was investigated. A sampling trip to Lake Winnipeg in October 2017, focused on the isolation, enumeration, and identification of aerobic anoxygenic phototrophs in littoral water, sediment, and tissues of mussels. Gimli, Patricia, and Grand beaches, separated by >15 km across the South Basin, had similar bacterial counts when cultivated on rich organic, BG-11, purple non-sulphur, and K2TeO3-supplemented media. Culture-based enumeration on rich organic medium revealed 1.74% of heterotrophs from littoral waters were aerobic anoxygenic phototrophs, and represented 13.98% within sediments. In contrast, 0.48, 1.15, and 0.16% of cultured heterotrophs were aerobic anoxygenic phototrophs within zebra mussel gill, gut, and gonadal tissues, respectively. High-throughput sequencing of bacterial 16S V4 rDNA maintained similar trends in respective bivalve organs, where 0.22, 1.13, and 0.20% of total 16S genes belonged to these phototrophs. Several Sphingomonadaceae isolates were recovered from gut tissues, all with filamentous morphology large enough for predation. Bioaccumulation of metals was also studied in D. polymorpha. All tested associated aerobic anoxygenic phototrophs were capable of resisting the metalloid oxide tellurite. The consistent distribution of aerobic anoxygenic phototrophs within microbial communities across Lake Winnipeg, and their predominance in the gut tissues of zebra mussels suggested bacterial consumption by this invasive species.
Read full abstract