Multiple litters are accompanied by low birth weight, low survival rates, and growth rates in goats during early life. Regulating rumen microbiota structure can indirectly or directly affect host metabolism and animal growth. However, the relationship between high litter size and rumen microbiome, rumen fermentation, and growth performance in goat kids is unclear. In the present study, thirty 6-month-old, female goats were investigated, of which 10 goats were randomly chosen from single, twin and triplet goats respectively, and their birth weight was recorded. From birth, all goats were subjected to the same feed and management practices. Individual weaning and youth body weight were measured, and the rumen fluid samples were collected to characterize the bacterial communities and to determine the ruminal volatile fatty acids (VFA), free amino acids (AA), and free fatty acids (FA) concentration of those young goats. Compared with the single and twin goats, triplet goats have lower weaning and youth body weight and average daily gain (ADG). Ruminal propionate, butyrate, and total VFA were decreased in triplet goats. Meanwhile, ruminal AA, such as branched chain amino acids (BCAA), essential amino acids (EAA), unsaturated fatty acids (UFA), and monounsaturated fatty acids (MUFA) were decreased, while saturated fatty acids (SFA) and odd and branched chain fatty acids (OBCFA) were increased in triplet goats. Our results also revealed that litter size significantly affected the rumen bacterial communities, and triplet goats had a lower the Firmicutes: Bacteroidota ratio, the abundance of Firmicutes phylum, Rikenellaceae family, and Rikenellaceae RC9 gut group, and had a higher proportion of Prevotellaceae family, and several genera of Prevotellaceae, such as Prevotella, and unclassified f Prevotellaceae. Furthermore, Spearman's correlation network analysis showed that the changes in the rumen bacteria were associated with changes in rumen metabolites. In conclusion, this study revealed that high litter size could bring disturbances to the microbial communities and decrease the rumen fermentation efficiency and growth performance, which can be utilized to better understand variation in microbial ecology that will improve growth performance in triplet goats.