The importance of microbial communities in fish hatcheries for fish health and welfare has been recognized, with several studies mapping these communities during healthy rearing conditions and disease outbreaks. In this study, we analyzed the bacteriome of the live feeds, such as microalgae, rotifers, and Artemia, used in fish hatcheries that produce Mediterranean species. Our goal was to provide baseline information about their structure, emphasizing in environmental putative fish pathogenic bacteria. We conducted 16S rRNA amplicon Novaseq sequencing for our analysis, and we inferred 46,745 taxonomically annotated ASVs. Results showed that incoming environmental water plays a significant role in the presence of important taxa that constitute presumptive pathogens. Bio-statistical analyses revealed a relatively stable bacteriome among seasonal samplings for every hatchery but a diverse bacteriome between sampling stations and a distinct core bacteriome for each hatchery. Analysis of putative opportunistic fish pathogenic genera revealed some co-occurrence correlation events and a high average relative abundance of Vibrio, Tenacibaculum, and Photobacterium genera in live feeds, reaching a grand mean average of up to 7.3% for the hatchery of the Hellenic Center of Marine Research (HCMR), 12% for Hatchery A, and 11.5% for Hatchery B. Mapping the bacteriome in live feeds is pivotal for understanding the marine environment and distinct aquaculture practices and can guide improvements in hatchery management, enhancing fish health and sustainability in the Mediterranean region.