We evaluate the efficiency of back-scattering, eta(B), from a standard cantilevered AFM probe contacting a flat sample, and also the back-scattering phase. Both quantities are spectroscopically determined over a broad 9-12 mum wavelength range by coherent frequency-comb Fourier-transform spectroscopy (c-FTIR). While Fresnel reflectivity contributes a key factor with the SiC Reststrahlen edge at 975 cm(-1)as previously documented, we observe spectral effects ascribable to antenna resonances involving the shaft, cantilever, and sample. Most conspicuous is strong (eta(B) = 13%), resonant back-scattering at 955 cm(-1), a frequency that suggests the involvement of surface-phonon-polariton excitation, when the tip probes the area near a SiC/Au boundary. The probe's antenna properties are elucidated by numerically simulating the near fields, the fields in the radiation zone, and the far-field scattering distributions. The simulations are performed for a realistic tip/sample configuration with a three-orders-of-magnitude scale variation. The results suggest a standing-surface-plasmon-polariton pattern along the shaft, as well as far-field antenna lobes that change with the sample's dielectric properties.