The purpose of this report is to provide revised standards and guidelines for the exercise testing and training of individuals who are free from clinical manifestations of cardiovascular disease and those with known cardiovascular disease. These guidelines are intended for physicians, nurses, exercise physiologists, specialists, technologists, and other healthcare professionals involved in exercise testing and training of these populations. This report is in accord with the “Statement on Exercise” published by the American Heart Association (AHA).1 These guidelines are a revision of the 1995 standards of the AHA that addressed the issues of exercise testing and training.2 An update of background, scientific rationale, and selected references is provided, and current issues of practical importance in the clinical use of these standards are considered. These guidelines are in accord with the American College of Cardiology (ACC)/AHA Guidelines for Exercise Testing.3 ### The Cardiovascular Response to Exercise Exercise, a common physiological stress, can elicit cardiovascular abnormalities that are not present at rest, and it can be used to determine the adequacy of cardiac function. Because exercise is only one of many stresses to which humans can be exposed, it is more appropriate to call an exercise test exactly that and not a “stress test.” This is particularly relevant considering the increased use of nonexercise stress tests. ### Types of Exercise Three types of muscular contraction or exercise can be applied as a stress to the cardiovascular system: isometric (static), isotonic (dynamic or locomotory), and resistance (a combination of isometric and isotonic).4,5 Isotonic exercise, which is defined as a muscular contraction resulting in movement, primarily provides a volume load to the left ventricle, and the response is proportional to the size of the working muscle mass and the intensity of exercise. Isometric exercise is defined as a muscular contraction without movement (eg, handgrip) and imposes greater pressure than volume …
Read full abstract