A novel thermoactive phosphatidylcholine-specific phospholipase C (PC-PLCBs) was identified from Bacillus stearothermophilus isolated from a soil sample from an olive oil mill. Enhanced PLCBs production was observed after 10 h of incubation at 55 °C in a culture medium containing 1 mM of Zn2+ with an 8% inoculum size and 6 g/L glucose and 4/L yeast extract as the preferred carbon energy and nitrogen sources, respectively. PLCBs was purified to homogeneity by heat treatment, ammonium sulfate fractionation, and anion exchange chromatography, resulting in a purification factor of 17.6 with 39% recovery. Interestingly, this enzyme showed a high specific activity of 8450 U/mg at pH 8–9 and 60 °C, using phosphatidylcholine PC as the substrate, in the presence of 9 mM sodium deoxycholate and 0.4 mM Zn2+. Remarkable stability at acidic and alkali pH and up to 65 °C was also observed. PLCBs displayed a substrate specificity order of phosphatidylcholine > phosphatidylethanolamine > phosphatidylserine > sphingomyelin > phosphatidylinositol > cardiolipin and was classified as a PC-PLC. In contrast to phospholipases C previously isolated from Bacillus strains, this PLCBs substrate specificity was correlated to its hemolytic and anti-bacterial potential against erythrocytes and Gram-positive bacterial membranes, which are rich in glycerophospholipids and cardiolipin. An evaluation of PLCBs soybean degumming process efficiency showed that the purified enzyme reduced the phosphorus content to 35 mg/kg and increased the amount of diacylglycerols released, indicating its ability to hydrolyze phospholipids in the crude soybean oil. Collectively, PLCBs could be considered as a potential catalyst for efficient industrial oil degumming, advancing the edible oil industry by reducing the oil gum volume through transforming non-hydratable phospholipids into their hydratable forms, as well as through generating diacylglycerols, which are miscible with triacylglycerols, thereby reducing losses.