The goliath grouper Epinephelus itajara is a large sized (> 400 kg) and critically endangered marine fish, which is protected in many countries, including Brazil. Through the application of semi-structured interviews, we investigated the local ecological knowledge of seven fishermen specialist on catching E. itajara from the Babitonga bay, Santa Catarina, Brazil. Local long-line fisheries for E. itajara seemed to be a disappearing tradition in the studied site, with a detailed inherent local ecological knowledge system, which is also being lost. Our study also showed that fishermen engaged in recent fisheries, such as spear-fishing, can also possess a detailed local ecological knowledge system. Through the analysis of fishermen local ecological knowledge, several aspects of E. itajara life history were registered. This species is found in the inner and outer Babitonga bay, from saline waters to areas with a large input of freshwater, and inhabits submerged wooden substrates and artificial reefs such as shipwrecks, mooring pillars and cargo containers. It is known to spawn in December and subsequent summer months in the studied area. Spawning aggregations are usually seen in December (during full moon), being also eventually observed in January and February by our informants. While lobsters, spadefishes and octopuses seem to constitute the most important food items of inner bay E. itajara, outer bay individuals may feed on catfishes, crustaceans and other fish species. The goliath grouper is regarded as pacific and curious fish, but frequently display agonistic behavior in the presence of divers. Based on the perception of well experienced spear fishermen, we hypothesize that E. itajara undertakes seasonal migrations from the inner to the outer bay during summer, and that the studied population is suffering from growth over-fishing. Our data provides a practical evidence of how joining scientific and local ecological knowledge will likely benefit E. itajara local conservation and management practices by adding important new biological data into the decision-making process.
Read full abstract