Rapid growth within performance and stability of organic-inorganic halide-based perovskite solar cells (PSCs) has made this emerging photovoltaics a great potential for further research towards successful commercialization. However, two major issues of: (i) Structural ambient stability, and (ii) Toxicity, caused by the presence of Pb content, are the pivotal obstacles for the commercialization of environmental friendly PSC. In this regard, we are introducing a highly ambient stable PSC through the incorporation of barium (Ba) with successful ultrashort annealing through intense pulsed light (IPL). The ambient stability of Ba doped perovskite thin films was explored in the humidity range of 35–68%. The power conversion efficiency (PCE) of fabricated devices were found to be 8.99, 7.39, 6.94, 6.60, 5.98 and 3.82% for pristine, 1, 2, 5, 10, and 20 mol% Ba doping, respectively. Afterwards, fabricated devices were kept in ambient environment under dark for 20 days. With systematic photovoltaic analysis, it was observed that the 2.0 mol% Ba doped PSC exhibited 8.0% efficiency drop (from 6.94 to 6.38%), whereas the PCE of pristine based devices decreased from 8.99 to 2.60%, demonstrating an almost 71.0% drop. Our photovoltaic results demonstrated a great improvement within the ambient stability of PSC without any encapsulation which can indicate Ba doping as highly promising approach for the fabrication of PSC with higher ambient stability.
Read full abstract