Three PCsp3P pincer ligands differing in the aryl group linking the phosphine arms with the anchoring carbon donor were used to support square planar Ni(II) bromide complexes 1-3Br. Exchange of the coordinating bromide anion for the more weakly coordinating triflate (OTf) or hexafluoroantimonate (SbF6) anions was accomplished by treatment with AgX or TlX salts to give compounds 1-3X; compounds 1OTf, 1SbF6, 2Br, 2OTf, 3Br, and 3SbF6 were all characterized by X-ray crystallography. The reactions of these Ni(II) compounds with the amine-N-oxide oxygen atom transfer agents ONMe3 and ONMePh2 were explored. For ONMe3, reactions with 2 equiv gave products in which one arm of the pincer ligand was oxidized to a P═O unit, with the other amine-N-oxide ligated to the Ni(II) center, forming products 5-6X; compounds 4OTf, 5OTf, and 6SbF6 were characterized crystallographically. Transient amine-N-oxide adducts prior to ligand oxidation were observed in some reactions. For the more effective O atom donor ONMePh2, reactions were very rapid and a second oxidation of the remaining phosphine arm was observed, producing a Ni(II) species with an OCO pincer ligand (7SbF6). All compounds were fully characterized. Experiments aimed at trapping transient Ni(IV) oxo intermediates (with cyclohexadiene, KH, and various Lewis acids) indicated that such species were not involved in the reaction. This was supported by density functional theory (DFT) computations at the B3PW91 level, which indicated that direct O atom insertion into the Ni-P bonds without the intermediacy of a Ni oxo species was the low-energy pathway.