Due to the phenomenon of holes and inferior seedlings in trays, it is necessary to remove and replenish unqualified seedlings. The traditional operation is labor-intensive, and the degree of mechanization is low. This paper took broccoli seedlings as the research object and developed an image recognition system suitable for seedling health recognition and pose judgement, researched and designed a plug-in end effector that reduces leaf damage, and conducted orthogonal tests to obtain a substrate parameter combination containing the moisture content, seedling age, and transplanting acceleration suitable for culling operations. A parallel robot kinematics and dynamics model was built. The fifth degree B-spline curve was used to construct the joint space motion curve for seven nodes, and the motor speed, torque, and end-effector acceleration were used to construct the joint space motion curves. The end-effector acceleration was the constraint condition to plan the optimal trajectory of the joint space in time, and the optimal time was obtained using the artificial fish swarm–particle swarm hybrid optimization algorithm. A single operation time was greatly reduced; the whole machine was systematically built; the average time of single-time seedling removal was measured; and the transplanting efficiency of the whole machine was high. In the seedling damage rate gap test, the leaf damage rate was low. This research provides a reference for the localized development of greenhouse high-speed and low-loss seedling removal equipment.
Read full abstract