The equiaxed microstructure formed below the β-phase transition point of Ti alloys generally exhibits an excellent balance of mechanical properties and corrosion resistance. However, this desirable microstructure is impossible to be obtained in fusion welded joints but is prospective to be achieved by the solid-state friction stir welding (FSW) technique. Unfortunately, it generally generates bottom defects and severe tool wear in medium-thickness Ti alloy joints when conventional FSW was conducted below the β-phase transition point. In this study, 6 mm thick Ti-6Al-4 V plates were joined by both the conventional FSW and back heating assisted FSW (BHAFSW). Defects caused by significant tool wear and bottom phase transition differences occurred in the conventional FSW. It was found that the hardness difference between the base material (BM) and the tool increased to 35.6 % from 500 °C to 900 °C. The back heating (150 °C) was used to control welding temperatures remaining the 900 °C, thus largely reducing the tool wear by increasing the hardness difference. In addition, the back temperature compensation increased the bottom temperature and controlled the phase transition position from the bottom to the middle of the joint. The shoulder pressure contributed to the compression of the defects, and the defects were eliminated by increasing the pressure at the phase transition position. A significantly refined equiaxed microstructure with an average grain size of ∼0.9 μm was achieved below the β-phase transition temperature in the stir zone via back heating assisted FSW, while a bimodal structure with an average grain size of 3.5 μm was formed near the β-phase transition temperature. Inconspicuous reduction of the strength was detected for the joints (98 % of the BM) which possess equiaxed microstructures, and the corrosion resistance of the joints was enhanced compared to the BM. This superior synergy of mechanical and corrosion properties exceeded the majority of Ti alloy joints previously reported. This study provided an effective method for obtaining medium-thickness Ti alloy joints with ultrafine equiaxial structures with superior mechanical properties and corrosion resistance.