Abstract

We have investigated the morphological and optical properties of α- and β-phase Zinc Phthalocyanine (ZnPc) thin films for application to organic photovoltaic cells (OPVs). It was found that the α-phase is completely converted to the β-phase by thermal annealing at 220 °C under ultrahigh vacuum conditions. When the α- to β-phase transition takes place, the surface roughness of the ZnPc film became flat uniformly with a nanometer order of unevenness by anisotropic growth of crystalline grains along a lateral direction to substrates. Correspondingly, the optical absorbance of the β-phase film became greater by 1.5-2 times than that of the α-phase one in an ultraviolet-visible-near infrared (UV-vis-NIR) wavelength range, which plays a role in increasing the number of photogenerated excitons. On the contrary, time-resolved photoluminescence measurements showed that the average lifetime of excitons for the β-phase film became shorter by 1/6-1/7 than that for the α-phase one, which plays a role in decreasing the number of excitons achieving the donor/acceptor interface where excitons are separated to carriers (holes and electrons). Both the increase in the number and the shortening in the average lifetime have a trade-off relationship with each other for contribution to the photoelectric conversion efficiency of OPVs. Then, we examined an external quantum efficiency (EQE) of OPVs using the α- and β-phase films as a donor and obtained that the former OPV (α-phase) exhibits a higher EQE by ∼2 times than the latter one (β-phase) in the wavelength range of 400 nm-800 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.