The aim of the present research was to obtain a supramolecular complex between a strong antioxidant compound previously reported by our group, in order to extend its antioxidant activity. The formation of the inclusion complex of a catechol hydrazinyl-thiazole derivative (CHT) and β-cyclodextrin in aqueous solution has been investigated using isothermal titration calorimetry (ITC), spectroscopic and theoretical methods. The stoichiometry of this inclusion complex was established to be equimolar (1:1) and its equilibrium constant was determined. An estimation of the thermodynamic parameters of the inclusion complex showed that it is an enthalpy and entropy-driven process. Our observations also show that hydrophobic interactions are the key interactions that prevail in the complex. 1H NMR spectroscopic method was employed to study the inclusion process in an aqueous solution. Job plots derived from the 1H NMR spectral data demonstrated 1:1 stoichiometry of the inclusion complex in a liquid state. A 2D NMR spectrum suggests the orientation of the aromatic ring of CHT inside the β-CD cavity. The antiradical activity of the complex was evaluated and compared with free CHT, indicating a delayed activity compared with free CHT. To obtain additional qualitative and visual insight into the particularity of CHT and β-CD interaction, molecular docking calculations have been performed.
Read full abstract