5,10,15,20-Tetrakis(4-sulfonatophenyl)porphinato iron(III) (Fe(III)TPPS) forms a very stable 1:2 complex with heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMe-beta-CD), whose iron(III) center is located at a hydrophobic cleft formed by two face-to-face TMe-beta-CD molecules. Various inorganic anions (X(-)) such as F(-), Cl(-), Br(-), I(-), N(3)(-), and SCN(-) coordinate to Fe(III)TPPS(TMe-beta-CD)(2) to form five-coordinate high-spin Fe(III)TPPS(X)(TMe-beta-CD)(2), while no coordination occurs with ClO(4)(-), H(2)PO(4)(-), NO(3)(-), and HSO(4)(-). Except for F(-), none of the anions investigated coordinate to Fe(III)TPPS in the absence of TMe-beta-CD due to extensive hydration to the anions as well as to Fe(III)TPPS. The present system shows a high selectivity toward the N(3)(-) anion. The thermodynamics suggests that Lewis basicity, hydrophilicity, and shape of an X(-) anion are the main factors to determine the stability of the Fe(III)TPPS(X)(TMe-beta-CD)(2) complex.
Read full abstract