The development of efficient and environmentally friendly catalysts for the electro-oxidation of hydrazine derivatives is of great importance in various industrial applications. In this study, we report the utilization of graphite-based catalysts for the electro-oxidation of hydrazine derivatives, using sodium chloride as a green and sustainable chemical approach. Graphite, a two-dimensional carbon material with exceptional properties, offers numerous advantages as a catalyst, including its high surface area, excellent electrical conductivity, and chemical stability. These characteristics make graphite an ideal candidate for promoting electrochemical reactions. Sodium chloride (NaCl), a readily available and cost-effective salt, serves as a green alternative to traditional oxidants used in hydrazine oxidation processes. By replacing conventional oxidizing agents with NaCl, we aim to reduce the environmental impact associated with the production and disposal of hazardous chemicals. This process enables the transformation of the HN-NH bond within hydrazines, leading to the formation of azo compounds (N = N). Azo compounds are important organic molecules with diverse applications in organic synthesis. This novel approach has successfully showcased the efficacy of utilizing various azo compounds in 13 different examples, yielding excellent or moderate to good results. The method capitalizes on electricity as the final oxidizing agent, providing an environmentally friendly oxidation strategy. Its high efficiency and gentle reaction conditions make this technique valuable for synthesizing azo derivatives, even when working with hydrazines containing diverse functional groups, resulting in yields ranging from moderate to excellent. Through systematic experiments, we evaluated the catalytic performance of graphite-based catalysts in the electro-oxidation of hydrazine derivatives. The catalysts demonstrated remarkable catalytic activity due to their efficient conversion of hydrazine derivatives into desired products. Moreover, the system exhibited good stability and recyclability, suggesting its suitability for practical applications.
Read full abstract