Abstract

This work deals with selective reduction of aromatic nitro compounds to corresponding symmetrical substituted azo compounds using nitrogen-doped TiO2 nanoparticles as photocatalyst in the presence of a catalytic amount of formic acid. Various azo compounds containing additional reducible substituents including halogens, and carboxyl and phenol functions have been synthesized in a single step by use of this catalyst. The conversion was reasonably fast, clean, and high yielding at room temperature. A mechanism of formation for the azo compounds is proposed. The behavior of the N/TiO2 catalyst is of particular interest because this is the first time, as far as we know, that formation of azo compounds has been catalyzed by an N-doped TiO2 photocatalyst. Nitrogen-doped TiO2 was prepared by a simple modified sol–gel process with urea as nitrogen source. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and transmission electron microscopy. The chemical nature of N was identified by XPS as N–Ti–O in the anatase TiO2 lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.