Background: Multiple sclerosis (MS) is characterized by white matter demyelinating plaques, which can be classified as active, chronic active, or chronic inactive based on the extent of demyelination, cellularity, and inflammation. Microglia and macrophages play a central role in these processes. This study aimed to investigate the morphological characteristics of HLA-DR-immunopositive cells in these plaques to improve our understanding of the roles of these cells in MS plaques. Methods: This study is a retrospective post-mortem histopathological study. We analyzed 90 plaques from 6 MS cases. Of the plaques studied, 77 were grouped into three categories: 28 active, 34 chronic active, and 15 chronic inactive. Additionally, five vacuolated white matter lesions, two axonal degeneration lesions, and six lesions with mixed histological features were included. Six control cases were also examined to assess HLA-DR-immunopositive cell expression across various age groups. The cells were classified based on their morphology into two types: round cells without processes (macrophages) and cells with varying processes and shapes (ramified microglia). Results: Both macrophages and ramified microglia were present in all lesion types, with a focus on identifying the predominant cell type. Of the 28 active plaques, macrophages were the primary cell type in 25 plaques, while ramified microglia predominated in 3. In the center of 49 chronic plaques, scattered ramified microglia were observed in 46, with three plaques showing a predominance of macrophages. Among the 34 chronic active lesions, ramified microglia were the main cell type in the periphery of 32 plaques, with the remaining two predominantly exhibiting macrophages. Conclusions: The predominance of macrophages in active lesions and the presence of scattered ramified microglia in the center of chronic plaques are consistent with the phagocytic role of macrophages. Meanwhile, the prevalence of ramified microglia at the periphery of chronic active lesions suggests a potential protective function in maintaining lesion stability.