Amyotrophic lateral sclerosis (ALS) is characterized by the mislocalization and abnormal deposition of TAR DNA-binding protein 43 (TDP-43). This protein plays important roles in RNA metabolism and transport in motor neurons and glial cells. In addition, abnormal iron accumulation and oxidative stress are observed in the brain and spinal cord of patients with ALS exhibiting TDP-43 pathology and in animal models of ALS. We have previously demonstrated that TDP-43 downregulation significantly affects the expression of ferritin heavy chain (Fth1) mRNA in the axonal regions of neurons. Nevertheless, the mechanisms by which TDP-43 contributes to oxidative stress and iron accumulation in the central nervous system remain elusive. In this study, we aimed to investigate whether Fth1 mRNA is a target transported to the axon by TDP-43 using biophysical and biochemical analyses. Our results revealed Fth1 mRNA as a target mRNA transported to axons by TDP-43. Moreover, we demonstrated that TDP-43 regulates iron homeostasis and oxidative stress in neurons via Fth1 mRNA transport to the axons, possibly followed by a local translation of the ferritin heavy chain in the axons. This study suggests that TDP-43 plays an important role in preventing iron-mediated oxidative stress in neurons, with its loss contributing to ALS pathogenesis.
Read full abstract