Pulsed EPR spectroscopic techniques, including ESEEM (electron spin echo envelope modulation) and pulsed ENDOR (electron-nuclear double resonance), are extremely useful for determining the magnitudes of the hyperfine couplings of macrocycle and axial ligand nuclei to the unpaired electron(s) on the metal as a function of magnetic field orientation relative to the complex. These data can frequently be used to determine the orientation of the g-tensor and the distribution of spin density over the macrocycle, and to determine the metal orbital(s) containing unpaired electrons and the macrocycle orbital(s) involved in spin delocalization. However, these studies cannot be carried out on metal complexes that do not have resolved EPR signals, as in the case of paramagnetic even-electron metal complexes. In addition, the signs of the hyperfine couplings, which are not determined directly in either ESEEM or pulsed ENDOR experiments, are often needed in order to translate hyperfine couplings into spin densities. In these cases, NMR isotropic (hyperfine) shifts are extremely useful in determining the amount and sign of the spin density at each nucleus probed. For metal complexes of aromatic macrocycles such as porphyrins, chlorins, or corroles, simple rules allow prediction of whether spin delocalization occurs through sigma or pi bonds, and whether spin density on the ligands is of the same or opposite sign as that on the metal. In cases where the amount of spin density on the macrocycle and axial ligands is found to be too large for simple metal-ligand spin delocalization, a macrocycle radical may be suspected. Large spin density on the macrocycle that is of the same sign as that on the metal provides clear evidence of either no coupling or weak ferromagnetic coupling of a macrocycle radical to the unpaired electron(s) on the metal, while large spin density on the macrocycle that is of opposite sign to that on the metal provides clear evidence of antiferromagnetic coupling. The latter is found in a few iron porphyrinates and in most iron corrolates that have been reported thus far. It is now clear that iron corrolates are remarkably noninnocent complexes, with both negative and positive spin density on the macrocycle: for all chloroiron corrolates reported thus far, the balance of positive and negative spin density yields -0.65 to -0.79 spin on the macrocycle. On the other hand, for phenyliron corrolates, the balance of spin density on the macrocycle is zero, to within the accuracy of the calculations (Zakharieva, O.; Schünemann, V.; Gerdan, M.; Licoccia, S.; Cai, S.; Walker, F. A.; Trautwein, A. X. J. Am. Chem. Soc. 2002, 124, 6636-6648), although both negative and positive spin densities are found on the individual atoms. DFT calculations are invaluable in providing calculated spin densities at positions that can be probed by (1)H NMR spectroscopy, and the good agreement between calculated spin densities and measured hyperfine shifts at these positions leads to increased confidence in the calculated spin densities at positions that cannot be directly probed by (1)H NMR spectroscopy. (13)C NMR spectroscopic investigations of these complexes should be carried out to probe experimentally the nonprotonated carbon spin densities.