IntroductionElastic nails have been widely used in the diaphyseal fracture fixation of long bones in adolescents. However, high complication rates have been reported in cases involving weights exceeding 55 kg. The existing nails are fabricated with different metals in clinical settings; however, the effect of the materials on the mechanical responses of the fractured bone remains unclear. Hence, the present study is conducted to compare the mechanical responses of typically used metals, namely titanium, stainless, and nickel–titanium, for elastic nails in the fixation of tibial diaphyseal fractures. Material and methodsA sawbone tube is used to determine the contact force, which is developed after constraining the nail inside the narrow canal using different nail materials. Furthermore, a finite element (FE) model of the tibial diaphyseal fracture is developed to predict the fracture gap deformation based on different nail materials under axial compression and bending loads. The push-out force in the FE simulation is compared with that of a case without an end cap. ResultsIn the sawbone tube, the results indicate that the contact force developed by the titanium nail is significantly higher than those developed by stainless and nickel–titanium nails. The contact forces developed by the titanium, stainless steel, and nickel– titanium nails are 385 (SD 34), 358 (SD 49), and 258 (SD 42) N, respectively. In the FE simulation, the titanium nail yields the highest push-out force when an end cap is not used, and the push-out forces in axial compression are 201, 183, and 87 N in the titanium, stainless, and nickel–titanium nails under axial compression, respectively. By contrast, the stainless nail yields the smallest gap deformation when an end cap is used. ConclusionResults of the present study show that the end cap is an important factor affecting the mechanical responses of nails fabricated using different materials. Titanium nails are preferred when an end cap is not used, whereas stainless nails are preferred when an end cap is used.
Read full abstract