Total knee arthroplasty (TKA) stands as a primary intervention for severe knee ailments, yet concerns remain regarding postoperative patient satisfaction and flexion instability. This study aims to evaluate the in-vivo kinematics of medial-pivot (MP) and posterior-stabilised (PS) designs during step-up activity, in comparison to the kinematics of the nonoperated contralateral knee. Sixteen patients with PS-TKA and 14 with MP-TKA were retrospectively examined. Clinical outcomes were assessed using patient-completed questionnaires. Motion during step-up was captured using a dual fluoroscopic system. Statistical analysis was applied to evaluate the in-vivo tibiofemoral six-degree-of-freedom kinematics and articular contact positions between the two groups. Despite being older, patients in the MP group reported higher postoperative subjective scores for weight-bearing functional activities. The axial rotation centres of MP-TKA located on the medial tibial plateau exhibited less variance compared to PS-TKA and contralateral knees. Compared to the contralateral knee (contralateral to medial-pivot [C-MP] or contralateral to posterior-stabilised [C-PS]), the MP group exhibited limited range of motion in terms of anteroposterior translation (MP: 3.6 ± 1.3 mm vs. C-MP: 7.4 ± 2.5 mm, p < 0.01) and axial rotation (MP: 6.6 ± 1.9° vs. C-MP: 10.3 ± 4.9°, p = 0.02), as well as in the PS group for anteroposterior translation (PS: 3.9 ± 1.7 mm vs. C-PS: 7.2 ± 3.7 mm, p < 0.01). The MP group with better postoperative ratings demonstrated a more stable MP axial rotation pattern during step-up activity compared to the PS group, underscoring the pivotal role of prosthetic design in optimising postoperative rehabilitation and functional recovery. Level III.
Read full abstract