Abstract

Comparative EPR investigation of CO2− radicals in modern (γ-irradiated) and fossil samples of tooth enamel was performed. The samples studied were the enamel powders and plates, the latter demonstrating an orientation dependence of EPR spectra in an external magnetic field. It was found that the ratio between the axial and orthorhombic CO2− centers amounts appears to be different for modern and fossil enamels. This ratio can be estimated by modeling of EPR spectra lineshape of powders or, in the case of plates, from the orientation dependence of EPR spectra in an external magnetic field. It was assumed that the difference between modern and fossil enamels is caused by the transformation, in the course of time, of orthorhombic CO2− centers into axial ones. The equations that describe this process were deduced. Their solutions show that the ratio between the amounts of the axial and orthorhombic centers does not depend on the dose rate. This finding can be used for the development of the method to determine the fossil enamel age avoiding the determination of the annual dose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.