As massive integration of Distributed Energy Resources (DERs), the role of end-users in the Urban Community Microgrid System (UCMS) has transformed from traditional consumers into prosumers with capabilities of both energy production and consumption. The exchange of energy between autonomous microgrid prosumers can be achieved with the introduction of Peer-to-Peer (P2P) energy transaction, promoting the efficient allocation of energy in the UCMS. However, the existing centralized P2P energy transaction approaches require microgrid transaction brokers to obtain prosumers’ private data, including energy resource configuration, operation status, and energy production/consumption schedule. With the enhancement of prosumers’ awareness of privacy protection, it will be increasingly more difficult for the brokers to obtain such private data in practical application scenarios, resulting in obstacles on the implementation of such centralized approach. Thus, a novel distributed P2P energy transaction method based on the double auction market is proposed in this paper. Prosumers first generate the information of energy supply and demand autonomously utilizing distributed energy management model, then set the price targeting profit maximization, and finally initiate P2P energy transaction mutually in the double auction energy market. Compared with the existing centralized approaches, the method proposed in this paper can achieve the coordination and complementarity of energy in the UCMS, promoting economic benefit, energy self-sufficiency, and renewable energy self-consumption without sacrificing privacy preservation and robustness.
Read full abstract