Tenofovir amibufenamide fumarate (TMF) is the first oral drug developed in Asia for the treatment of adult patients with chronic viral hepatitis B, however, further applications are limited by poor tableting performance and high sticking propensity. In this work, the spherulitic growth process of TMF has been designed and explored with the help of molecular dynamics simulation and process analysis technologies (ATR-FTIR, FBRM and EasyViewer). The spherical particles with high bulk density, good flowability and uniform particle size distribution are prepared by a simple quenching process. More importantly, experimental results show that spherical particles have higher average tensile strength (100.8% increase), higher plastic deformability and lower amount of punch sticking (87.4% decrease in 30 tablets) compared to the commercial powder products. These contributions not only shed light on the design principle of drug spherulitic growth processes, but also provide guidance for the manufacture of high-quality tablet products.