Using very long baseline interferometry data for the sources that comprise the third International Celestial Reference Frame (ICRF3), we examine the quality of the formal source-position uncertainties of ICRF3 by determining the excess astrometric variability (unexplained variance) for each source as a function of time. We also quantify multiple qualitatively distinct aspects of astrometric variability seen in the data, using a variety of metrics. Average position offsets, statistical dispersion measures, and coherent trends over time as explored by smoothing the data are combined to characterize the most and least positionally stable ICRF3 sources. We find a notable dependence of the excess variance and statistical variability measures on decl., as is expected for unmodeled ionospheric delay errors and the Northern Hemisphere–dominated network geometries of most astrometric and geodetic observing campaigns.
Read full abstract