Co-digestion is a strategy that may prevent microbial inhibition during the anaerobic treatment of sugarcane vinasse, a substrate with highly biodegradable organic load, acidity, and toxic compound levels (e.g., sulfates, phenols). In this context, this study evaluated the microbial dynamics and methanogenic potential throughout the co-digestion of sugarcane vinasse and secondary effluent from the dairy industry in a mesophilic lab-scale upflow anaerobic sludge blanket (UASB) reactor. Periodic next-generation sequencing (NGS) analyses revealed an increase in the relative abundance of the phylum Euryarchaeota (+8.6 % after inoculation), predominating hydrogenotrophic methanogens (Methanobacterium and Methanobrevibacter) at the end of the operation. Moreover, the average methane yield was 221 mLCH4 gCODrem-1, with 69 % of organic matter removal. These results evidenced a progressive acclimation of the anaerobic microbial community to the substrate and a stable operation. Therefore, the proposed experiment demonstrates energy advantages for the agro-industrial sector by implementing a similar but full-scale treatment plant.
Read full abstract